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Molecular docking-guided active conformation selection was used in a quantitative structure-activity

relationship (QSAR) study of a series of novel protoporphyrinogen oxidase (PPO) inhibitors with

herbicidal activities. The developed model can be used for the rational and accurate prediction of

herbicidal activities of these inhibitors from their molecular structures. Molecular docking study was

carried out to dock the inhibitors into the PPO active site and to obtain the rational active

conformations. Based on the conformations generated from molecular docking, satisfactory pre-

dictive results were obtained by a genetic algorithm-multiple linear regression (GA-MLR) model

according to the internal and external validations. The model gave a correlation coefficient R 2 of

0.972 and 0.953 and an absolute average relative deviation AARD of 2.24% and 2.75% for the

training set and test set, respectively. The results from this work demonstrate that the molecular

docking-guided active conformation selection strategy is rational and useful in the QSAR study of

these PPO inhibitors and for the quantitative prediction of their herbicidal activities. The results

obtained could be helpful to the design of new derivatives with potential herbicidal activities.
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INTRODUCTION

Inhibition of chlorophyll and heme biosynthesis has been
an excellent approach in the development of herbicides.
Protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is an essential
enzyme in chlorophyll biosynthesis. PPO, which oxidizes
protoporphyrinogen IX (Protogen) to protoporphyrin IX
(Proto) in the penultimate step of porphyrin biosynthesis,
has been identified as the target of inhibitors with herbicidal
activity. Inhibition of this highly regulated enzymatic con-
version of Protogen to Proto leads to an unregulated extra-
plastidic accumulation of Proto (1 ). Accumulation of this
photodynamic chlorophyll precursor is responsible for the
light-dependent herbicidal action of PPO-inhibiting herbi-
cides (2 ). All known PPO inhibitors apparently target at or
near the catalytic site on the enzyme and compete with
Protogen (3-7 ). On the basis of their chemical structures,
these compounds can be classified into diphenyl ethers,
benzoxazinones, phenyl imides, triazolinones, tetrazolinones,
oxadiazolones, thiadiazolidines, isothiazolones, arylpyrroles,
etc. (8 ).

Recently, Li et al. reported a series of novel pyrazolo-triazin-
based PPO inhibitors (9). This class of inhibitors is different from
all the ones mentioned above. These inhibitors exhibited good
herbicidal activity. To further improve the herbicidal activity of
these inhibitors, new compounds based on the experimentally
active inhibitors should be designed. Then it will be quite
necessary to analyze the quantitative structure-activity relation-
ship (QSAR) of the known inhibitors to perform rational
molecule design.

In recent years, several QSAR studies have been performed on
different PPO inhibitors (10-12). All these works used the precise
density functional theory (DFT)-based calculation to obtain the
lowest-energy molecular conformation, and then built QSAR
models with quantum chemical descriptors. The derived models
have better performance than the semiempirical level based
models and have potential predictive ability, because DFT is a
more precisemethod, which can obtain the optimal lowest-energy
conformation. However, theDFT calculation is time-consuming,
and an approach with both good model performance and time-
saving calculation will be of more practical use. Another im-
portant issue that needs to be paid attention to in these QSAR
studies is that the conformation of the inhibitor obtained from
DFT calculation may not be the active conformation.
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In QSAR studies, the molecular descriptors are important
intermediates correlating the molecular structures with their
target activities. The molecular descriptors are often calculated
from three-dimensional molecular structures. Any in-depth re-
presentation of a molecule structure should take into account its
3D structure (13). So how to obtain the appropriate 3Dmolecular
conformation is of great importance. Generally, the lowest-
energy molecular conformations are used to calculate descriptors
in QSAR study, but in most cases, the active conformations of
inhibitors are different from the lowest-energy molecular con-
formations. Becker et al. have attempted to build a conformation
space and created a QSAR type descriptor to quantify the effect
of conformation constraints on bioactivity, which was shown to
be in excellent correlation with the observed activity of the
molecules (14), but the method is too complex to be used in
QSAR study.

In this work, the docking-guided molecular conformation
selection strategy docking method was introduced into a QSAR
study of PPO inhibitors to obtain rational active conformations.
The docking program AutoDock4.0 (15) was used to dock all
inhibitors into the active site of PPO. Based on the generated
active conformations, a variety of molecular descriptors were
calculated and genetic algorithm (GA) was used to select themost
relevant descriptors to build QSAR model. By explaining the
physical-chemical meaning of the selected descriptors, we can
investigate the most important structural factors influencing the
activity.

MATERIALS AND METHODS

Data Set. The 35 3H-pyrazolo[3,4-d][1,2,3]triazin-4-one derivatives
used in this study are novel protoporphyrinogen oxidase (PPO) inhibitors
available in the literature (9). The herbicidal activities expressed as pI50
values were used as dependent variable in the following analyses. The
structures of all compounds are shown in Table 1, and the biological data
are listed in Table 2.

Molecular Docking and Molecular Descriptor Calculation. All
molecular structures were drawnwith themolecular sketch program in the

SYBYL 6.9 molecular modeling package (16), and energy minimizations
were performed using the MMFF94 force field (17) with a distance-
dependent dielectric function and Powell method with a convergence
criterion of 0.01 kcal/mol. Then to locate the appropriate binding
orientations and conformations of these derivatives interacting with
PPO, molecular docking program Autodock version 4.0 (15) was used
for the automated molecular docking studies. The PPO crystal structure
was obtained from the RCSB PDB database (18) (PDB: 1SEZ) (19), and
the contained waters were deleted.

All inhibitors were docked into the PPO crystal structure to obtain the
active conformations. AutoDockTools 1.4.5 (ADT) (20) was used to add
polar hydrogens and to assign Kollerman-all-atom charges for PPO and
Gasteiger-Marsili charges for the inhibitors. AutoGrid 4.0 (15) was used
to create affinity grids centered on the active site based on the location of
the cocrystallized ligand. Each grid enclosed an area of 60 Å� 60 Å� 60 Å
with 0.375 Å spacing. All bond rotations and torsions for the ligand were
automatically set in the ADT. The number of individuals in each
population was set at 50. The rest of the parameters were taken as default.
Finally, the docking was performed by AutoDock 4.0 (15) employing the
Lamarckian genetic algorithm (LGA) (15) method for conformational
search and docking. The resulted docking conformations were transferred
into DRAGON 5.4 (21) to calculate the molecular descriptors.

Data Splitting Based on Principal Component Analysis (PCA).
To build and validate a QSAR model, a representative training set is

needed to develop the model, and a test set is needed to validate the

external predictive ability of the derived model. In this study, the principal

component analysis (PCA) method was used to obtain such a training set

and test set (22). PCA is a computational tool that reduces the dimension-

ality of molecular descriptor space while retaining an accurate representa-

tion of the intermolecular distances. PCA based on the generated

descriptors of the whole data set was performed and the descriptor space

was explored using the obtained principal components. In this space the

representative subsets were selected.

Descriptor Selection andModel Construction. The next stepwas to
search the feature space and select pertinent descriptors correlatedwith the
herbicidal activity. Here, genetic algorithm (GA) (23) was used due to its
good performance in feature selection (24-26). In general, the process of
GA proceeds as follows. First of all, GA generates a set of solutions
randomly which is called an initial population. Each solution is called

Table 1. Chemical Structures of All the PPO Inhibitors

no. R1 R2 R3 R4 no. R1 R2 R3 R4

1 CH3 H Cl OCH2CtCH 18a n-C3H7 H R3R4dOCH2CONCH2CtCH

2a CH3 H Cl OCH2CHdCH2 19 n-C3H7 H R3R4dOCH2CONCH2CHdCH2

3 CH3 H Cl OCO2CH2CH3 20 CH3 H Cl OH

4 CH3 CF3 Cl OCH2CtCH 21a CH3 H Cl OCH3
5 CH3 CH3 Cl OCH2CtCH 22 CH3 H Cl OC2H5
6a CH3 CH3 Cl OCH2CHdCH2 23 CH3 H Cl O(n-C4H9)

7 CH3 H R3R4dOCH2CONCH2CtCH 24 CH3 H Cl O(n-C5H11)

8a CH3 H R3R4dOCH2CONCH2CHdCH2 25 CH3 H Cl OCH2CHdCHCl(E)

9 CH3 H R3R4dOCH2CON(n-C3H7) 26a CH3 H Cl OCH2C(Cl)dCH2

10 CH3 CF3 R3R4dOCH2CONCH2CtCH 27 CH3 H Cl OCH2CN

11a CH3 CF3 R3R4dOCH2CONCH2CHdCH2 28 CH3 H Cl OCH2OC2H4OCH3
12 CH3 CH3 R3R4dOCH2CONCH2CtCH 29 allyl H Cl OCH2CtCH

13 CH3 CH3 R3R4dOCH2CONCH2CHdCH2 30a allyl H Cl OCH2CHdCH2

14 allyl H Cl OCH2CtCH 31 allyl H R3R4dOCH2CONCH2CtCH

15a allyl H Cl OCH2CHdCH2 32a allyl H R3R4dOCH2CONCH2CHdCH2

16 allyl H R3R4dOCH2CONCH2CtCH 33 n-C3H7 H R3R4dOCH2CONCH2CtCH

17a allyl H R3R4dOCH2CONCH2CHdCH2 34 n-C3H7 H R3R4dOCH2CONCH2CHdCH2

a Test samples.
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a chromosome, and it is usually represented in the form of a binary string.
After the generation of the initial population, a new population is formed
to consist of the fittest chromosomes as well as offspring of these
chromosomes based on the notion of survival of the fittest. The value of
the fitness for each chromosome is calculated based on leave-one-out
(LOO) cross validation (Q2

loo). In general, offspring are generated by
applying genetic operators. Among various genetic operators, selection,
crossover and mutation are the most fundamental and popular operators.
These steps of evolution continue until the stopping conditions are
satisfied (27, 28).

In the present work, genetic algorithm and multiple linear regression
(GA-MLR) were performed in MobyDigs (29) using GA-VSS (genetic
algorithm-variable subset selection) and the ordinary least-squares regres-
sion (15) method. The corresponding parameters used were as follows:
population size, 100; maximum allowed variables in a model, 3; and
reproduction/mutation trade-off (T), 0.5. The crossover and mutation
values are all based on T and calculated automatically in the software.

Furthermore, particular attention was paid on the collinearity of the
selected molecular descriptors by applying the QUIK rule (Q under
influence of K) (30). Only models with a global correlation of the [X þ
Y] block (KXY) greater than the global correlation of the X block (KX)
variable can be accepted, where X is the descriptor matrix and Y is the
dependent variable. The detailed theory of the QUIK rule can be found
in ref 30.

QSAR Model Validation. Before a QSAR model is used to predict
the activities for new compounds, it should be validated both internally
and externally to ensure that the built model is robust, reliable, stable and

predictive. In the current work, several statistic terms such as correlation
coefficient (R2), leave-one-out (LOO) cross-validated Q2

loo, root-mean-
square error (RMSE), and the absolute average relative deviation
(AARD) were used to assess the internal predictive ability of the proposed
model. Besides, the Y scrambling technique was also employed to exclude
the possibility of chance correlation and to check for reliability and
robustness by permutation testing. In Y scrambling, new models were
recalculated for randomly reordered responses (Y scrambling). The
resulting models obtained with randomized response should have signi-
ficantly lowerQ2

loo values than the proposed one because the relationship
between the structures and activities is broken (31). Y scrambling was
performed by response scrambling with maximum iterations of 500, and
then the mean Q2

loo of the Y scrambling was reported. Furthermore, the
built model was also validated externally using the test set compounds due
to the fact that the best way to evaluate the predictive ability of a QSAR
model is its validation using compounds not included in the training set
with known activities (31, 32). The corresponding statistical parameters
were defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðyie - yipÞ2

n

vuuut

AARD ¼ 100

n

Xn
i¼1

jyie - yipj
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where i represents the ith molecule, yie is the desired output (experimental
property), yip is the actual output, and n is the number of compounds in the
training or test set.

Applicability Domain of the QSAR Model. The applicability
domain (AD) of the model is evaluated using the hat value, which is
defined as follows:

hi ¼ xiðXTXÞ-1xTi ði ¼ 1, :::, mÞ

where xi is the descriptor row-vector of the query compound i, m is the
number of query compounds, and X is the n� kmatrix of the training set
(k is the number of model descriptors and n is the number of training set
samples). To visualize the AD of a QSAR model, the plot of cross-
validated standardized errors versus hat values (the Williams plot)
achieves an immediate, and simple, graphical detection of both Y outliers
and X outliers in a model. In the plot the horizontal and vertical dashed
lines indicate the limits of normal values: the first for the Y outli
ers (i.e., compounds with cross-validated standardized errors greater than
3.0 standard deviation units, (3.0σ) and the second for X outliers
(i.e., compounds with hat values greater than h*). The warning hat h* is
fixed at 3k0/n generally, where n is the number of training compounds and
k0 is the number of model parameters plus 1.

RESULTS AND DISCUSSION

DockingAnalysis.All inhibitorswere docked into the active site
of PPO to obtain the active conformations for the following
QSAR analysis. The automated molecular docking produced
50 binding conformations. The obtained 50 conformations of
each inhibitor were clustered according to the rmsd (root mean
squared deviation) values relative to the initial conformation, and
the most possible binding conformations were selected according
to both the interacting energy and the number of conformations
in a cluster. In thisway, themost likely binding conformations for
all compounds were obtained.

The binding mode of the most active compound 16 in the PPO
active site (the main residues in interactions are displayed) is
displayed in Figure 1(a), and corresponding 2D interaction mode
is shown in Figure 1(b). These two figures illustrate how the
carbonyl oxygenatomof the triazine ringof 16 forms twoH-bond
interactions (a strongonewithbond length 2.59 Å and aweakone
of 3.19 Å) with the residue Arg98. In addition, this inhibitor is
located in a hydrophobic pocket composed by residues Leu334,

Table 2. The Experimental and Predicted Activities by the GA-MLR Model
and the Relevant Descriptors in the QSAR Model

no. exp pI50

pred pI50
MLR

absolute

error SCBOa GGI9a R2uþa
C-

033a

1 7.12 6.96 -0.16 34.5 0.131 0.084 0

2b 6.33 6.65 0.32 33.5 0.131 0.087 0

3 6.31 6.32 0.01 35.5 0.182 0.090 0

4 5.71 5.71 0.00 38.5 0.298 0.080 0

5 6.49 6.77 0.28 35.5 0.151 0.089 0

6b 6.10 6.49 0.39 34.5 0.151 0.091 0

7 7.85 7.59 -0.26 39.5 0.182 0.077 0

8b 7.34 7.22 -0.12 38.5 0.182 0.082 0

9 7.37 7.35 -0.02 37.5 0.182 0.070 0

10 5.74 5.54 -0.20 43.5 0.388 0.082 0

11b 5.41 5.14 -0.27 42.5 0.388 0.088 0

12 6.63 6.69 0.06 40.5 0.241 0.088 0

13 6.28 6.41 0.13 39.5 0.241 0.090 0

14 7.94 7.81 -0.13 37.5 0.161 0.064 0

15b 7.19 6.94 -0.25 36.5 0.161 0.086 0

16 8.02 7.94 -0.08 42.5 0.212 0.074 0

17b 7.78 7.75 -0.03 41.5 0.212 0.073 0

18b 7.87 7.84 -0.03 41.5 0.212 0.070 0

19 7.75 7.79 0.04 40.5 0.212 0.064 0

20 6.23 6.11 -0.12 29.5 0.060 0.108 0

21b 6.12 5.98 -0.14 30.5 0.105 0.099 0

22 6.53 6.22 -0.31 31.5 0.121 0.091 0

23 6.61 6.56 -0.05 33.5 0.151 0.081 0

24 6.32 6.54 0.22 34.5 0.186 0.073 0

25 6.55 6.72 0.17 34.5 0.151 0.083 0

26b 6.58 6.67 0.09 34.5 0.161 0.080 0

27 6.64 6.85 0.21 34.5 0.131 0.088 0

28 6.09 6.32 0.23 36.5 0.196 0.091 0

29 4.51 4.46 -0.05 37.5 0.161 0.092 1

30b <4.50 4.12 - 36.5 0.161 0.096 1

31 5.27 5.38 0.11 42.5 0.212 0.075 1

32b 4.83 4.75 -0.08 41.5 0.212 0.089 1

33 5.00 5.22 0.22 41.5 0.212 0.073 1

34 5.04 4.76 -0.28 40.5 0.212 0.081 1

35 8.49 8.46 -0.03 37.0 0.101 0.066 0

a The detailed definitions can be found in the section Molecular Descriptor
Explanation. b Test set compounds.
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Phe392, Phe439, Gly370, Gly175, Leu369, Thr371, Leu356,
Val355, Leu372, Phe353 and Gly354. Figure 1(c) indicates that
PPO interacts with the inhibitor mainly through hydrophobic
interactions. 16 is located in the hydrophobic pocket like a “key”
in the “lock”. All other inhibitors bound to the active site of PPO
in a similar way with 16. Based on the reasonable binding
conformations, the following analyses were performed.

PCA Analysis of the Training and Test Sets. The PCA method
was used to visualize the descriptor space of the data set and show
the distance between each pair of compounds. The PCA plot is
shown in Figure 2. The PC1, PC2, and PC3 made 47.13%,
10.94%, and 8.41% contributions to the total PCs, respectively.
In all, these three PCs account for 66.48%of the descriptors in the
data set.Figure 2 illustrates the data set clustered into two classes,
which agrees with the two framework structures of the data set.
That is to say, the PCA plot represents the molecular diversity of
these compounds appropriately. Therefore, compounds in the
training and test sets were selected based on the 3D plot
considering that the training set was representative of the whole
data set. Eventually, 24 compounds were selected to the training
set and 11 compounds were in the test set as listed in Table 1.

Results of the Final QSAR Model. To select most relevant
descriptors to the pI50 of the compounds, GA was performed to
do the feature selection based on the training samples only. The
optimum number of descriptors (Dn) was determined when
adding new descriptors did not improve the performance of the
model significantly. In this work, the optimum Dn was four. The
best 4-parametermodel and corresponding validating parameters
were as described below:

pI50 ¼ 0:2234 SCBO-13:58 GGI9

-29:32 R2uþ- 2:532ðC-033Þ þ 3:498

N tr ¼ 24, Q2
loo ¼ 0:954, R2

tr ¼ 0:972, KX ¼ 37:34, KXY

¼ 48:80, Q2
Y-scrambling ¼ 0:087, RMSEtr

¼ 0:168, AARDtr ¼ 2:24%

RMSErepresents the root-mean-square error, andAARDmeans
the absolute average relative deviation. From the statistical
parameters, it can be seen that the MLR model is stable and

Figure 1. The binding mode of the most active compound 16. (a) The
binding interactions of 16 in the active site of PPO by using the PyMOL
program (40). The yellow sticks represent the amino acid residuals in the
active site, and the green sticks describe 16; the blue dashed lines and the
numbers represent H-bond interactions and the corresponding bond length
between the heavy atoms. (b) Schematic representation of interactions
between 16 and PPO produced using the Ligplot program developed by
Wallace et al. (41). (c) 16 in the binding pocket of PPO by the PyMOL
program (40).

Figure 2. PCA plot of the compounds in the training and test sets.
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has good internal predictive ability. The model can predict the
10 external test set compounds very well with R2

test value of
0.953, AARDts 2.75% and RMSEts 0.208. The prediction for
30 in the test set is 4.12, which is also consistent with its
experimental activity less than 4.50. The predicted pI50 values
are listed in Table 2. Figure 3 shows the regression plot of
predicted pI50 vs experimental values. In addition, from the
Williams plot (Figure 4) it can be seen that there is no Y outlier
and there is no X outlier. All these results indicate that the built
model is robust, reliable, stable and predictive.

Molecular Descriptor Explanation. By interpreting the descrip-
tors in the regressionmodel, it is possible to gain some insight into
factors that are likely to govern the activities of these compounds.
The values of descriptors for each compound are listed inTable 2.
The relative importance of the descriptors was determined by
their standardized regression coefficients (Std Coeff). The Std
Coeff values of the four descriptors are SCBO (0.783), GGI9
(-0.876), R2uþ (-0.299), and C-033 (-0.937), respectively.
It can be seen that the most important descriptor is the C-033,
which is an atom centered fragment descriptor defined for each
ring atom with three neighbors. It represents the number of the

R--CH 3 3 3X fragment in a molecule with the meaning that a
central carbon atom (C) on an aromatic ring has a carbon
neighbor (R), a heteroatom neighbor (X) and the third hydrogen
(H) neighbor outside the ring. “--” and “ 3 3 3 ” stand for aromatic
and aromatic single bonds, respectively (33). For these PPO
inhibitors, the C-033 fragment indeed plays an important role
in the binding process and can influence the herbicidal activity
tremendously. There are two different frameworks of the inhibi-
tors except 35, and the difference lies in the C-033 fragment,
i.e. the position of the R1 substituent group as shown in Table 1.
It can be seen from Figure 1(c) that the active pocket has not
enough space to accommodate the R1 group of 29-34 for steric
block, which can explain their lower activities. The second
descriptor is GGI9. GGI9 belongs to the G�alvez topological
charge indices, which were proposed to evaluate the charge
transfer between pairs of atoms, and therefore the global charge
transfer in the molecule based on the corrected adjacency matrix.
It is worthwhile to note that the molecular conformation can
affect the distribution of charges, consequently change the GGI9
value. Therefore, reasonable conformation is very important to
get correct descriptor values. GGI9 represents the ninth eigen-
value of the matrix of a molecule, and the lower values of these
descriptors are required to improve the activity (34,35). The third
descriptor, SCBO, is a constitutional descriptor, whichmeans the
sum of conventional bond orders (H-depleted) (36). R2uþ is an
R-GETAWAY (GEometry, Topology, and Atom-Weights
AssemblY) molecular descriptor, which is derived by employing
the molecular influence matrix and geometric interatomic dis-
tances in the molecule (37, 38). It has been successfully used to
predict activities of A1 adenosine receptor agonists (39). The
matrix is calculated from the spatial coordinates of the molecule
atoms in a given conformation, which also emphasizes the
importance of the reasonable conformation.

In conclusion, a quantitative structure-activity relationship
study was performed on a series of PPO inhibitors based on
docking-guided molecular conformation selection strategy. All
inhibitors were docked into PPO active site to obtain the active
conformations by using the software AutoDock4.0. PCA were
used to split the data set into a training set and a test set. GAwas
used to select the most important descriptors based on the
training set only. The obtained model is stable and has good
predictive ability according to the internal and external valida-
tions. The four molecular descriptors contained in the model
have specific physical-chemical meaning. Among them, the frag-
ment C-033 plays the essential role in the correlation between
inhibitors and PPO, which can also explain the lower activities of
29-34. Moreover, a topological charge index descriptor and an
R-GETAWAY descriptor indicate that the molecular conforma-
tion is greatly important in building a quantitative relationship
between structure and activity. The present work demonstrates
that the docking-guided molecular conformation selection strat-
egy is very useful in QSAR studies for quantitative prediction of
biological activity, and, therefore, could be expected to help
facilitate the design of new derivatives with potential activity.
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